Precise and reversible band gap tuning in single-layer MoSe2 by uniaxial strain.

نویسندگان

  • Joshua O Island
  • Agnieszka Kuc
  • Erik H Diependaal
  • Rudolf Bratschitsch
  • Herre S J van der Zant
  • Thomas Heine
  • Andres Castellanos-Gomez
چکیده

We present photoluminescence (PL) spectroscopy measurements of single-layer MoSe2 as a function of uniform uniaxial strain. A simple clamping and bending method is described that allows for application of uniaxial strain to layered, 2D materials with strains up to 1.1% without slippage. Using this technique, we find that the electronic band gap of single layer MoSe2 can be reversibly tuned by -27 ± 2 meV per percent of strain. This is in agreement with our density-functional theory calculations, which estimate a modulation of -32 meV per percent of strain, taking into account the role of deformation of the underlying substrate upon bending. Finally, due to its narrow PL spectra as compared with that of MoS2, we show that MoSe2 provides a more precise determination of small changes in strain making it the ideal 2D material for strain applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pressure induced metallization with absence of structural transition in layered molybdenum diselenide

Layered transition-metal dichalcogenides have emerged as exciting material systems with atomically thin geometries and unique electronic properties. Pressure is a powerful tool for continuously tuning their crystal and electronic structures away from the pristine states. Here, we systematically investigated the pressurized behavior of MoSe2 up to ∼ 60 GPa using multiple experimental techniques ...

متن کامل

Stacking orders induced direct band gap in bilayer MoSe2-WSe2 lateral heterostructures

The direct band gap of monolayer semiconducting transition-metal dichalcogenides (STMDs) enables a host of new optical and electrical properties. However, bilayer STMDs are indirect band gap semiconductors, which limits its applicability for high-efficiency optoelectronic devices. Here, we report that the direct band gap can be achieved in bilayer MoSe2-WSe2 lateral heterostructures by alternat...

متن کامل

Band-Gap Tuning Of Electron Beam Evaporated Cds Thin Films

The effect of evaporation rate on structural, morphological and optical properties of electron beam evaporated CdS thin films have been investigated. CdS thin film deposited by electron beam evaporation method in 12nm/min and 60nm/min evaporation rates on glass substrates. X-ray diffraction, scanning electron microscopy, UV-Vis-NIR spectroscopy and Atomic Force Microscopy were used to character...

متن کامل

Tunable lasing in cholesteric liquid crystal elastomers with accurate measurements of strain

We report wide range and reversible tuning of the selective reflection band of a single crystal cholesteric liquid crystal elastomer (CLCE). The tuning is the result of mechanical shortening of the helical pitch achieved by imposing a uniform uniaxial strain along the helical axis. On doping the CLCE sample with a laser dye, we observe lasing from the CLCE in both glassy and rubbery states. By ...

متن کامل

Phonon softening and direct to indirect band gap crossover in strained single-layer MoSe2

Phonon softening and direct to indirect band gap crossover in strained single-layer MoSe2 S. Horzum,1,2,* H. Sahin,1,† S. Cahangirov,3,‡ P. Cudazzo,3,§ A. Rubio,3,| T. Serin,2,¶ and F. M. Peeters1,** 1Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium 2Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100 Ankara, Turkey 3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 8 5  شماره 

صفحات  -

تاریخ انتشار 2016